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Abstract. The level-I integrable highest weight modules of Up(&) admit a level-0 adion of 
the same algebra. This action is defined using the affine Hecke algebra and the basis of the level- 
1 module generated by components o f  vertex operators. Each level-1 module is a direct sum 
of finitedimensional irreducible level-0 modules, whose highest weight vector is expressed in 
terms of Macdonald p ~ l y ~ m i a l s .  This decomposition leads to the fennioaic character formula 
for the level-1 modules. 

1. Introduction 

The present article is concemed with a curious finding in representation theory, noted 
recently in connection with conformal field theory (m) and solvable lattice models. In the 
context of quantum affine algebras, the statement is the following. Let V(Ai) (i = 0, 1) be 
a level-I integrable highest weight module of U,(&). Then it admits a level-0 action of the 
same algebra U,(&). This second action leaves invariant each homogeneous component 
V(Ai)--, and the whole module becomes a direct sum of finite-dimensional irreducible 
constituents, which can be described explicitly. 

The origin of this observation goes back to the study of spin chains with long-range 
interactions (the Haldandhastry model) [ll]. This model has a remarkable property that 
the Yangian Y(&) acts as an exact symmetry even for finite chains. By 'considering 
the continuum limit, it was suggested in [ l l l ,  and subsequently confirmed in [2,3,5,19], 
that the? is an action of the Yangian on level-1 integrable modules of the affine Lie 
algebra sl,. This action is related to the fermionic character formula for the level-1 module 
conjectured in 1161. Similar results are expected to hold for higher level representations 
as well 141. The fermionic expressions conjectured there for the characters of the level-k 
modules, subsequently proved in [l,  171, strongly support the validity of this picture. 

What w e  discuss in this paper is a q-deformation of these structures i n  the simplest 
case of U,(slz) with level-1. Namely we consider level-1 modules of Uq(s12). and define 
a level-0 action on them. The quantum affine algebra with level 0 plays the role of the 
Yangian in cm. It is not yet clear whether such a q-deformation is related to some physical 
models like the Haldandhastry chain. Apart from the technical complexity, the essence 
of the construction does not differ very much from the conformal case. In this respect we 
are not claiming any sort of methodical novelty. Our aim here is to supply the mathematical 
details and give a coherent accouilt of this as yet mysterious phenomenon. 

0305-4470/95/195589+18$19.50 0 1995 1OP Publishing Ltd 5589 
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Here is the plan of the paper. In section 2 we introduce a level-0 action of U,(&) on 
the sum of level-1 integrable highest weight modules 'H = V(&) @I V(Al). This part is a 
review of our previous paper [121. The level-0 action is defined with the help of the affine 
Hecke algebras which appear in [21, and the action is given on certain generating series 
of the vectors in 'H. To ensure the construction is well-defined, we introduce appropriate 
completions of the spaces, and sort out all the linear relations among the generating series 
mentioned above. In the conformal case, the Yangian generators have explicit realizations 
in terms of currents. Lacking such formulae in the deformed case, our construction is rather 
indirect. In section 3 we define a family of highest weight vectors CO~J E 'H with the aid of 
Macdonald polynomials, following the ideas in [3]. These vectors are indexed by N E iZx 
and a partition h of length at most N. We remark that the vectors m i . ~  can be given an 
explicit formula in terms of bosons and Macdonald symmetric functions (see. (3.9)). This 
point will not be used in the rest of the paper. We show in section 4 that OA,N'S generate 
inside 'H irreducible modules of the form (see (4344.7)) 

W A . N =  W n , ( a i ) @ . . . @ W n m ( a d .  

Here W,(a) is the (n + 1)-dimensional evaluation module (see appendix A for 
conventions). Moreover 31 is a direct sum of them: 

vw = wA," 
Nr i (mod2)  

I W S N  

This decomposition corresponds to the known fermionic sum formula for the characters 

which we use in the course of the proof of these statements. 

we assume that q is transcendental over Q. 
Throughout this paper we fix a complex number q such that 0 < 191 < 1. In section 4 

2. Level-0 action 

In this section we define the level-0 action on the level-1 integrable modules of Uq(&). 
The proofs of the statements in this section are given in [12]. 

2.1. Spinon baris 

This subsection contains some prelimkary material. Let us fix the notation following [13]. 
The quantum affine algebra U = Uq(s/2) is generated by e i ,  fi, ri = qh' (i = 0,l)  and q . 
When we refer to the subalgebra U,,(slz), we mean the one generated by el, fj and tl .  By 
U' we mean the subalgebra of U generated by ei, fi, ti (i = 0, 1). We use the coproduct 
A given by 

d 

A(eJ = ei @ 1 +ti @ e ;  
A ( q h ) = q h @ q h  @=hi ,@.  

A(fi) = fi @ r;' + 1 @ f; 

Let V = @U+ eB @U- be the irreducible two-dimensional module of U.(sh) .  Let further 

Vaf = span,[u,,, I E = f, n E Z] 
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be the level-0 U-module defined as follows. 

We shall use the generating series 

Let V(&) = Ul i )  (i = ~ O ,  1) be the integrable level-1 U-module with highest weight 
vector li). The index i is to be read modulo 2, i.e. Aj+2 = Ai. Set 31 = V(&) @ V(Al). 
This is a Zgraded vector space 

X = $ H ,  N, = {U E Xlqdu =q1u). 
?SO 

In particular, 'Ho = C]O) c3 CI 1). We regard End@ X as a level-0 U-module by the opposite 
adjoint action 

adopx . f = ~ q ~ ~ f a - ' ( x ( ~ ) )  

where f E En& 'H, x E U ,  A(x) = X(I) @ x(z) and a denotes the antipode. 
The level-0 action will be defined with the aid of the type-I vertex operator 

 by^ definition, it is  the generating series of operators e,, E Endc 'H with the following 
properties: (i) the map U EI u ~ , ~  H @,"U from N @ V, to H is an intertwiner of U- 
modules, (ii) @,n'Hr c Xr+n, (iii) *+,olO) = Il), 6t,,Il) = IO). 

. 

Consider the vector space 

V=$V. v,=v, ON 

N>O 

with the U-action given by the opposite coproduct Aop(x) = C x p )  @ x<,). 

Proposition 2.1. The map 

p o : V - - t X  
U,,,", @ ~ . . @ U v , . " ,  w c: * , " t ' ' ' 8J&,nNIO)  

is surjective and U,(slz)-linear, 

The vectors of the form (2.2) are not linearly independent. As shown in [IO], i t~is possible 
to choose a~suitable subset to construct a basis. A similar basis appeared also in cm 
under the name of the spinon basis, which was used for constructing the Yangian action on 
conformal blocks [3,4,19]. We follow the same strategy in the q-deformed case in~order 
to define the level-0 action. For this purpose we need to determine all the linear relations 
among (2.2) [lo]. This will be discussed in the next subsection. 
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2.2. Linear relations 

The map PO factors through the map 
p : V + En&X (2.3) 

(2.4) 
- *  

~ s , , n L @ " . @ % N , f l N  H q,,at'''@cN,nM. 
Among the linear relations for the vectors (2.2), the major ones derive from the commutation 
relations of vertex operators. The latter involve infinite sums, and to justify them we need 
to complete the space V.  

Set 
(1) - VN - span&,,,,, @ . . . @ u ~ , , , , ~  I ml + . . . + mN = r 1. 

Define a filtration of Y$) by 

vi) 3 '. ' 3 V$)[I] 3 V$)[i + 11 3 . . . 
vi)[il= S P ~ , I U ~ , . , ,  @ . . . @ us,,.," E VN  I max(ml+ mz + . . . 

We complete the space V i )  with respect to this filtration 

(r)  

+mN,...,mN-l+mN,mN) 

^ I  0 )  - limy$)/ $) 
' N  -+  v [11 

p (v$)[IJ) = o if1 +s > 0. 

j5' : 9 + E n d c X  & : 9 + X .  

I 
-'(r) - and set 9N = c?&zV~ , V' = @ N > o $ ~ .  Since X, = 0 for t > 0, we have 

Therefore, the map p and PO extend to the completion: 

To state the commutation relations, we prepare the R-matrix a(z)  E End@ V @ V :  

- 1 - q z  
1 - q2z 

R(z)u- @ U+ = - q ( z -  l ) u + @  U- + - U- @ U+. 
1 - q2z (2.5) 

These formulae are regarded as a power series in z. Let nj : End@ V + Endc V@" be the 
natural injection to the jth component of End@ PN Y End@ V @ . . . @ Endc V .  We set 
kjij,K(z) = (nj @ rr~)(k(z)). 

Consider the generating series in $;, 

where 

In ('2.6) we have set p j  = 0 (if j N mod 2), = 1 (otherwise). 
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Propositwn~2.2. The Laurent coefficients of the following belong to Kerb’. 

FcI ._... ej,qil ,..., s N ( z l ,  . . . , z j + ~ , Z j ,  . . . . Z N )  
” 

- - R j . j + I ( Z j + l l Z j ) F q  ...., Z,.E,+! ,.._. ~ N ( z I ,  t . 1 ,  Z j , Z j + l ,  ..., Z N ) .  (2.7) 

Proposition 2.2 implies that the vectors 8’ Fcl...EN,ml...mN) with m l  < . . . 4 mN span 

Let us introduce a second filtration in 3:’. 
the space 7.t. 

$2) 2 . . .2 ?$)[[m]] 3 f$ES’)[[m + 111 2 . . . 
Vf’[[m]] = cl.spanc{F, ,... EN,ml...mN E V i )  I max(m1,:. . , m ~ )  > m} 

where cl stands for the closure in p. We denote by $:) the completion off(,? with respect 
to this filtration 

^ I  ^ I  

*O) - and set $N = @,,EVN , V = @ N W ~ N .  
From proposition 2.2 it follows that 

if m i- s z 0. Therefore the maps 6’ and 6; extend further to p: 

b:D+End@‘H +%:$--t‘H. 

The vectors &(Fe,...sN,m,...m,,) are subject further to two kinds of relations: the highest 
weight condition (2.8) and the fusion relation (2.9). 

Proposition 2.3. The kernel of 60 contains 

Fel...eN,m ,... mN with mj > 0 for some j .  (2.8) 

Proposition 2.4. The Lament coefficients of the following belong to Kerp. 

- ( - q ) N - j + ( e j - l ) / 2 g  
q+q+,.o 

Define fi (respectively N) to be the closure of the span of elements (2.7) and (2.8) 
(respectively (2.7), (2.8) and (2.9)) in 9. 

Proposition 2.5. The following map induced from $0 is a CT,(slz)-linear isomorphism 

9 fN N ‘H. 
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2.3. ABne Hecke algebra 

To distinguish different actions of U' on the same module, we shall sometimes write 
for 1 E C to mean the quotient of U' modulo qc = q'. We will construct an action of 
on 9 in such a way that the subspace fl is invariant under the action. The main tools are 
the affine Hecke algebras and the L operators acting on V. 

Define S E Endc V @ V by 
su, @ U E  = -q-lus @ U, 
su+ @ U- = (q - q-l)u+ @ U- - U- @ U+ 

su- @U+ = -U+ @ U-. 

The operators Sj,j+l = (zj @ nj+l)(S) E End@ VeN ( j  = 1,. . . , N - 1) satisfy the Hecke 
algebra relations 

1 
S j , j+l-  s;j+l = 4 - 4-l 

Sj.j+lSk.k+l = sk,k+Isj . j+l ( l j  -kl > 1) 
sj, j+l sj+1, j+zsj.j+l = Sj+l.j+ZSj. j+l Sj+l. j+2. 

The R-matrix #(z) (2.5) can be written as 

Define 

(2.10) 
(2.11) 
(2.12) 

(2.13) 

(2.14) 

Here Kj,k signifies the exchange of variables zj  and zk .  The Gj,j+l ( j  = 1,. . . , N - 1) also 
satisfy the relations (2.10)-(2.12). 

Proposition 2.6. In terms of Sj,j+l and Gj,j+l, the relation (2.7) is written as 

(sj.j+l -Gj,j+l)&t ..... E N ( z I . . . . * z N )  =O. (2.15) 
The action of the Hecke algebra given via Gj,j+l can be extended to that of the affine 

Hecke algebra. Set 

J'j = (G;J+iKj.j+l) '.. (GiT~Kj.N)pa~((Kl,jGI,j) ". (Kj-1,jGj-1.j) 

= Gij+l ...G,'l,NZGi,~...Gj-l,j (2.16) 

where Z = K1,2K1,3.. . K1,Npal and p'j denotes the scale operator 

p"if(z1 ,..., zN)=f(zl,...,Pzj,...,zN). 
The operators Gj,j+l ( j  = 1, ..., N - 1) and Yj ( j  = 1, ..., N) satisfy the relations 

for the affine Hecke algebra &. Namely we have, in addition to (2.10)-(2.12), 

YjYk = YkJ'j 

Gj, j+lqGj,j+~ = Y,+l 

We note that the symmetric polynomials in 

For an operator X E Endc @h, zT'. . . . , ZN, z;'] we define 2 E End@ CN by 

[Gj,j+l, ykl = 0 ( j ;  i + 1 + k ) .  
( j  = 1, . . . , N) belong to the centre of 

kN. 
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2.4. L-operators 

In order to define ULo-action on P we use the L-operator formalism. Some of the basic 
facts on L-operators are givenin appendix A. 

Noting that the operators Yl ( j  = 1, . . , , N )  commute with each other, we set 

N-lf-I  (2.17) 
- 
Lo(X) = ~ 0 l ( X ; q N - ' ~ ~ ' ) . . . ~ O N ( X ; q  N ) 

- .so;! - qasoj 
Lo j (x ;  a) = POI q a - x  

Define l$n] E EndCO as in (A.l) by expanding E&) in xi'. The Yang-Baxter equation 
for x ( x )  (A.2) implies 

- 
R~(~O/XW)E~(XO)~~(XW) = E&(XW)~O(XO)~OW (xo/xLy). 

Therefore, we get a representation of 3. We denote it by 

dN) : 8' -+ Ende$'. 

On U,(&), dN) is equal to the representation induced by the opposite coproduct. We 
have (cf [7J) 

(2.18) 

(2.19) 

(2.20) 

e l = ( :  A) f l = ( I  0 0  o) t 1 = ( 4  O )  
0 4-1 

in Endc V& and embed them by nj : Endc V s  4 En& 9. 

by dN). Because we have 
Because Y F  maps polynomials in I to polynomials, the linear span of (2.8) is invariant 

- 1 -  - 
~ o j ( x ;  ) ~ o j + l ( x ;  qN-lf>ll) ( s j . j + l -  & j , j + l )  

= ( s j , j + l - & j . j + 1 ) ~ j  (x; q~ N - I -  1 - ~ o j + l  (x; qN-I<:*) 

the linear span of (2.7) is also invariant. Therefore we have 

Proposition 2.7. The U;=,-action d"') on $ induces a lJ;=,-action on P/fl. 
In [12] we have further shown that 

Proposition 2.8. The U;=,-action on c/fl induces a UL,-action on PjN. 
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3. Highest weight vectors 

3.1. Vectors &,N 

In this subsection we fix N 2 I and work with the space $/fl. Following the ideas of [3], 
we shall introduce a family of highest weight vectors 61.~ with respect to the level-0 action, 
and find their Drinfeld polynomials. In what follows we shall write z for (zl , . . . , Z N ) .  

Set y ( z )  = nj, (z j  - q'zt), and define a generating series in $/fl, 
Q(z)  = v(z)-lF+ ...+ ( z )  (3.1) 

Here H z )  = (qzz; q4),/(q4z; q4),. 
The following proposition is a direct consequence of the properties of the series 

Proposition 3.1. The coefficients of Q(z) are well-defined in f'/fl. Q(z )  is symmetric in 
Z I  , . . . , Z N  and does not comprise negative powers of them. 

The Macdonald polynomials Ph(z; p ,  2) with l (A)  < N constitute a basis of symmetric 
polynomials in z1, . . . , Z N  (see appendix B). Hence any symmetric formal power series has 
a unique expansion in terms of them. Define vectors &A.N E $/fl by 

Fa ,....e. ( Z ) .  

We will determine the Drinfeld polynomial for the U&nodule  generated by &,N.  

Below we drop the index of E&) when there is no chance of confusion. 
Proposition 3.2. Let T ( x )  be as in 2.17. Then 

The action of &U) on ~ 5 1 , ~  is given as follows. 

&u)&,N = A A , N ( ~ ) & , N  

Proposition 3.3. We have 

Prooj Since the action of f i  is defrned as yl on the series F8,,....a(z), we have 
N '  

L(u)Q(z)  = n(l - q N Yj *-I u)Q(z)  
j=1 

N 

= y(z)-' n(l - q " y U ) F +  ...+ (z)  
j=l 

(3.4) 

(3.5) 
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Under the conjugation by y ( z ) ,  the operators Gj,j+l and Yj change to 

On the other hand, the formulae (B.3) and (B.6) yield 

N N 

n(1 + y jU)pA(Z;  P ,  q2)  = n ( 1  - (-1)"N-2'f'pA''U) pA(z; p , q 2 ) .  
j=1  j=1 

The eigenvalues of an arbitrary symmetric function in yj are determined .from this formula. 0 

From (3.4H3.6) we see that ( s h . ~  is a highest weight vector whose Drinfeld polynomial 
is given by (3.7). 

3.2. Bosonic expression 

Consider now the image of &.N in 'li and call it o*,N: 

6 1 . N  A o ~ , N .  $1~7 + +INN 7-1 

In the next section we shall study the submodules of I-I generated by @*.N.  

bosons. Recall the bosonic realization of the level-l~integrable modules 
As noted in [3] in the case q = 1, these vectors can be expressed neatly in terms of 

Here b,'s stand for the standard bosonic oscillators satisfying [b,, b,] = m&,+.,o (m, n E 
Z\(O]). The highest weight vector of V ( & )  is given by li) = 1@&"~. In this language the 
'+'-component of the vertex operator reads as 

Here I acts as i times the identity on V ( A j )  (i = 0, 1). For the details see [13]. 

Remark. Following [9] we have rescaled the bosons a, in [13] as 
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Comparing the generating series with the duality property of the Macdonald 
polynomials (B.5), we find that 

(3.9) 

wherein the variables s, are substituted by the oscillators 
“-1 zn S, = (-1) q b-. 

and [ x ]  denotes the integer part of x .  From (3.9) it is clear that the vectors UA,N E 3t have 
the homogeneous degree 

(3.10) 

where [AI = A1 + t.. + AN and N 

4. Decomposition 

In this section, we study how the level-I integrable modules V(&)  ( i  = 0, 1) decompose 
with respect to the new level-0 action. We assume 141 e 1 and that q is transcendental over 
Q. 

i (mod2) (i = 0, I), 

4.1. Submodules 

Consider the subspace generated by WA,N’S, 

wL,N Wi,N = U L ~ A , N  
A.N 

where N 2 0 and A runs over partitions with [(A) < N. 

Proposition 4.1. The sum (4.1) is direct. 
Lemma 4.2. Let I1 be the operator acting on $N by 

As the first step we show: 

(4.1) 

Then it is well-defined on 7i and commutes with the action of 

Proof: By the construction of the action of U;,, symmetric polynomials in f i  act on 
$”/(N n $”), commuting with ULo. For (4.2) to be well-defined on E, we must show 
that it is compatible with the fusion relation. Let us set 

(4.3) 

where the N-dependence is exhibited explicitly. For the action to be well-defined, the 
following relations must hold: 

= (I?-”’ + 1 + 4’) ( FCI...EN(ZI, . . . , ZN)12, ,=4-g2rN-l) .  

This can be verified in almost the same way as in the proof of proposition 12 (4.8) in [12]. 0 
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Since II commutes with U' ,  it acts as a scalar on W;,N. From Proof of Proposition 4.1. 
the formula (3.6), its eigenvalue is given by 

Note that d ,  > t.. > dN > 0. Since we assume q to be transcendental, these eigenvalues 
are all distinct when (A, N) runs over all possible pairs. The proposition follows from this 
fact. U 

4.2. Irreducible modules 

Let WA.N denote the irreducible module which has the same Drinfeld polynomial (3.6) as 
WA,N.  At this stage we can only say that 

(4.4) 
This holds because the ineducible modde has the minimal dimension gnong the finite 
dimensional highest weight modules with the same highest weight.  as the next step, we 
study the structure of W A J .  

Given A with l (A )  Q N, let us re-parametrize it by two sets of non-negative integers 
(nil and ( k i }  as follows: 

(4.5) 

dim Wi,N 2 dim WA,N.  

A = ( k i ,  . . . , ki, k2,. . . , k 2 , .  . . , k,, . . . , km). -- - ", n2 "m 

Here m is a positive integer, kl > kz 5 . . . z k, >, 0, and CL, ni = N. Set 

Then the DrinfeId polynomial A,I,N(u) in (3.6) is factorized as 
(4.6) ai = q-4kj-2N+2("L+...+",-I)+ni+I 

AA,N(u) = &,(U; O L z ( u ;  4.. .&,(U; 4 
with 

n 
&(U; a) = n(1 - q"-2(i-') au) . 

i=1 

To each polynomial A,(u; aj), one can associate the (njf1)-dimensional evaluation module 
Wn,(aj) of U;=, (see appendix A for the conventions). The parametrization (4.5)-(4.6) is 
so designed that for any distinct pair (nj, ai), (nk, an) the tensor product W, (a,) e3 W ,  (ak) 

is irreducible. This implies [6] the following proposition. 
Proposition 4.3. 

WA.N W",(ai) @ ... 0 Wnm(ad.  (4.7) 

4.3. Characters 

For i = 0,1, define 
V(j) = w;,N C'FI. 

N d  (mod9 
I(A)CN 

The third step is to estimate its character 

(4.8) 

(4.9) 
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where d denotes the homogeneous grading operator on 'H. Given formal series f ( q )  = 

Lemma 4.4. 

f ,q" and g(q) = Cg,q", we write f ( q )  >> g(q) to mean f,, > g, for all n. 

Proof. The degree of U A , N  is given by (3.10). Since the action of U;=, commutes with d, 
this value of the degree occurs with multiplicity dim Wi,N. From (4.4) and (4.7) we obtain 

m 

dim WL.N > dim WA.N = n ( n i  + 1). 
i=l 

The estimate (4.10) follows from this. 0 

It is known [1,3,17] that the right-hand side of (4.10) gives 'the momogeneous) character 
for the level-1 module V(Ai). This leads us to the main result. 

Theorem 4.5. We have Wi.., N WA.N. The level-] integrable highest weight module V(&) 
is completely reducible under the action of 

(4.1 1) 

Remark. 
Denoting by h the standard generator of the Cartan subalgebra of slz, we have therefore 

The action of the U,(slZ) is common to both level-0 and level-1 stTuctures. 

where 
z"+l - z-(n+l) 

z - z-' = c zn+- 
n+.n-€Zro 
n++"-=" 

is the character of the (n+l)-dimensional irreducible representation of slz. The full character 
is then given by 

X"(Z) = 

with (4; 4). = (1 - 4) .  . . (1 - 4"). This agrees with equation (5.2) in 1161. 0 
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Appendix A. Drinfeld polynomials 

The aim of this appendix is to summarize our conventions concerning various generators 
of U' = U'(&) and Drhfeld polynomials. 

AS. Algebra 3 
FoIIowing [S, 181, define 6' = Ui(g2,) to be the associative algebra with the unit generated 
by the symbols @&n] (i, j = 1,2, n 2 0) and an invertible central element qclz. In terms 
of the matrix generating series 

The mahices (A.1) can be uniquely decomposed [8] as 

-1 - (f'(q"/Zx) - f - (q ' /2x ) )  = c i ; x - n .  
4 - 4-' nEZ 

Let x,' (k E 9, @k,  Ip-k (k E z ~ O ) ,  K = q h  and y be the Drinfeld generators of U' in 
~~ the notation of [13]. 

Proposition A.1 ([SI). U' is isomorphic to a. subalgebra of 3 by the map 

$k * $k 'Pk  6 k  X,'F+ $ y H q c .  
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Define l i j (x )  + = x + n > o ~ n l ; [ n ] .  The coproduct on C? is defined by 

A' ($(x)) = l$(q*2tc2/2x) 0 l$(qTC1/'x) 
k 1 . 2  

where CI = c 8 1 and cz = 1 @3 c. In terms of the Chevalley generators 
eo = n;to fo = to-'xZl to = y ~ - '  
el = n o  fi = x i  ti = K (A.3) 

the coproduct induced on U' reads 
A'(ei) = ej 8 ti + 1 8 ei A'(fi)"= fi 0 1 + f' 8 fi 
The identification of eo, fo in (A.3) differs from the one in [13] by a factor of y .  Note also 
that A' = AoP. 

A.2. Drinfeld polynomials 

Let us recall from [6] some basic facts about the finite dimensional representations of U'. 
On a finite-dimensional U'-module y acts as 1. 

Let W be a finite dimensional U'-module. For a polynomial P(u)  E C[u] satisfying 
P(0)  = 1, let d," E C be the coefficients in the expansion 

+ 

A'@;) = ti 8 tt .  

= C d , - U k  (as U -+ CO). 
kSQ 

A vector w E W is said to be a highest weight vector with the Drinfeld polynomial P(u)  
if the following hold: 

x:w = o  (k E Z) (A.4) 
@kW = d:W (k 0) 'pww = dLw (k Q 0). (A.5) 

Associating with w its Drinfeld polynomial, one obtain's a bijective correspondence between 
the equivalence class of irreducible finite dimensional modules and the set of polynomials 
normalized as P(0)  = 1. 

Suppose the module W is defined through (A.1). If w E W has the property 

L*(X)W = ( D*(x)w * >  
with some functions A*@),  D*(x), then the conditions (A.4), (AS) are satisfied. The 
Drinfeld polynomial P ( u )  is determined by 

(as U + 0) degP P(q-'U) - - A+(u-')  
P ( u )  D+(u-') 

Example. Let W, be the (n + 1)-dimensional irreducible module of Uq(s12). By W,,(a) 
we mean the evaluation module with the parameter a E C\[OJ whose U'-module structure 
is given by 

In our convention, the corresponding Drinfeld polynomial is 

I eo = afl fo = a-'el to = t; . 

p,,(u; a) = (1 - q"au)(l - q"-'au). . . ( I  - q-n+2au). 
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Appendix B. Macdonald polynomials 

B.I. Macdonald polynomials 

We recall here some facts concerning the Macdonald polynomials which are used in the 
text. For details see [14,15]. By a partition we mean a finite sequence of non-increasing 
integers A = (A,, . . . , A N ) ,  A< > . . . > AN > 0. Its length is &A) = max[ j I Aj > 0) .  

Let A N  be the ring of symmetric polynomials in N variables Z I , Z ~ ,  ..., Z N  with 
coefficients in Q(p, t ) ,  where p, t are indeterminates. (In the usual notation the letter q is 
used in place of p.) As before write z for ( Z I ,  z z ,  . . . , Z N ) .  The Macdonald polynomials 
PA(z; p,  t )  are a certain basis of A N  indexed by partitions A with l (A)  < N .  

The Macdonald polynomials are eigenfunctions of the Macdonald operators defined as 
follows. For each n = 1,. . . , N ,  let 

Here the summation is taken over all n-element subsets I of {I, 2, . . . , N ) ,  and p8J denotes 
the shift operator 

( P B ’ f ) ( Z 1  ,..., Z N ) = f ( Z l r  ... i P Z j ,  ... r Z N ) :  

Setting D$(p ,  t )  = 1, we consider the generating function 

Proposition B. 1. 
,U 

In particular 

Let A = limAN be the projective limit given via the restriction AN+L + A N .  
p pliN+l=o. For each fixed A, PA@; p.  t )  gives rise to a well-defined element in A. We 
denote it by A ( s ;  p ,  t )  E A viewed as a polynomial in the power sum s, = cj zj”, n > 1. 
Rewriting the duality property ([I4J, equation (3.12)) we have 

e 

Proposition B.2. Let ~ A ’  denote the partition conjugate to A (given by transposing the 
corresponding Young diagram). Then 

where the sum ranges over all partitions of length at most N 
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8.2. A lemma on Macabnald operators 

Consider the operators y j ,  r;j = Kijgij given in (3.8): 

yj  = r - ( i ,  N)p+r+( l ,  j )  
r-(i, j )  = r;ilr,&. . . rij -1 

r+(i, j )  = ri jri+lj  . . . rj-1 j 

rij = bji(l - Kjj )  -q- 'K; j  r:' L, = b..(l  1, - K i j )  - q K .  11 

qzi - q-12, b.. ' I  - - - , ,  bij +&j ;  = -4 - q-'. 
zi - 2 j  

Here we regard p ,  q as independent (we do not restrict to p = q4). In this subsection we 
prove the following proposition. 

Proposition B.3. For any symmetric polynomial P E AN, we have 

where D(u; p ,  t) is given in (B.2). 

Let L be a homogeneous polynomial in yj of degree n. When applied to a symmetric 
polynomial P E AN, we can move allUhe Kij to the right and rewrite LP in the form 

with some rational functions f , , , . . . , j0( z) .  We shall refer to L as the normal form of L. The 
following shows that it is uniquely determined from L. 

Lemm 8.4. 
identically in p .  Then fj, ..__. j.(z) = 0 for all j l ,  . . . , j,. 

Suppose an operator 2 of the form 03.7) satisfies EP = 0 for all P E AN, 

Pmof: It is helpful to extend the definition of fi ,..... j , (z)  for all j l . .  . . , j,, E [ I , .  . . , N ]  
by symmetry in j l .  . . . , j,, and as 0 whenever two indices coincide. 

where hi's are arbitrary positive integers. By assumption 
LP = 0. Picking the coefficient of p"+"'+" we find 

Take P = COGS" z & ) .  . 

N h  Now if Ci=l zi gi(z)  = 0 holds for any A = 1,2, . . ., then gi (z )  = 0 for all i. Since hj's are 
arbitrary, (B.8) implies xj2 ,,,,, jn  fi ,,_... j ,(z)z?. . . z k  = 0 for all j l .  Repeating this process 
we obtain the lemma. 0 

From the lemma, we must have = La for any U E SN, where 
P =  ~ 5, .,... j"(ZU(1)  I . . . ,  Z a ( N ) )  p~""I '+"~+~~u"'  

16jI <-..<j.SN 

Therefore 2 is determined once f1,~,...~~(z) is known. 
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For each n = 1, . . . , N define 

Y j l . ' . Y j n .  
l<j!--<j;<N 

Then proposition B.3 is equivalent to the following. 

Proposition B.5. Let I = ( 1 . 2 ,  . . . , N } .  The normal form of I:, is given by 
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where D;(p, t )  signifies the Macdonald operator (B.1). 

Proof. We prove B.9 by induction on n.  The case n = 0 is trivially true. 

jl < . . . < j., then we have 
From the remark above it suffices to compute the coefficient of p"I+.'+*" in E,. If 

d yj, . . . yj. = r-( jI ,  NIP  jl r-( j z ,  N)pdlz . . . r- ( j .  I N ) p 9 r + ( 1 ,  jdr+(Z, j d  . . . r+(n. j d .  
(B.lO) 

Suppose further 2 < j1 c . . . c j , ,  and set y,! = r-(j ,  N)p*]r+(Z, j ) .  We then find, using 
rij P = -4- ' P  for P E AN, that 

y j l . - . y j n P = ( - q ) - " y !  I ,  . . . y !  In P .  ( P E A N ) .  ( B . l l )  
. Let us write C,, = y~C:h-, + L:, where 

Lk-,= x. y h . - - y j " ,  ' L i =  Yj, . . .Yj" . 
Z<j%<-<jn<N Z<jL<-<jn<N 

From (B.lO) it is clear that the normal forms of LL-l, L: do not contain terms m,, pes 
with 1 E I .  To calculate the coefficient of pal+."+um, it is therefore enough to consider 
ylLL-,. By ( B . l l )  we may apply the induction hypothesis to Cc-l, to obtain 

Here the sum E,, ranges over the subsets I' c [Z, . . . , N }  with n - 1 elements. Let us 
bring the Kij  contained in rij to the right and pick the toefficient of p*1l+"'+'" in the normal 
form of r- ( 1 ,  n)L"'. The operator r - ( l ,  n)~comprises permutations of ZI, . . . , z,, alone, so 
the coefficient of p"+"'+'~ comes from that of L"'. It is easy to see that its normal form is 

N " 
I: -IN = (-q)-"+' ~n blj n b i j X n p " + . . .  

j=n+1 z<i<n i=l 
n c j < N  

with . . . denoting terms containing p*' with i > n. The first term is symmetric in the 
indices {I,  . . . , n). so r;,! (2 < j < n) acts as -4. Hence the coefficient of p8~+."+8" in E 
is given by 

(-q)"-'(-q)-"+' fl bj j  = n b.. lJ. 

l < i 6 n  l<i<fl 
n c j < N  l l<J<N 

0 This completes the proof. 
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Nole added in pronJ There is a small mistake in [I21 relevant to this paper. In subsection 4.2 of 1121, the last 
tine of the second to last equation should read 

= (sj.j+l - c3j , j+k)qN-' ( f )71  f"+" + y fti+"). 

The following text should then be insezted 
Hence 

r r ( N ) ( e o ) ( S j , j + i  - 6 j , j + 1 ) F ~ , . . . ~ ~ ( z i ,  .... m) = ( S j , j + i  - & j , j + d  

which completes the proof for eo. 
The last equation in subsection 4.2 of [I21 should read S(tl Bel) = (el B 1)s. 
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